

LYSIS

Consistent Precision & Reliability

10 Reasons to Choose Bulk Metal® Foil Resistor Technology for Your Circuit +1 New Reason

Over five decades after its invention by the physicist Dr. Felix Zandmanin 1962,

Bulk Metal Foil technology still outperforms all other resistor technologies available today for applications that require precision, stability, and reliability.

Bulk Metal**®** Foil technology products are offered in a variety of resistor configurations and package types to meet the needs of a wide range of applications.

Introduced in 2000, Bulk Metal Foil technology products built on the revolutionary Z Foil Technology deliver an nominal temperature coefficient of resistance (TCR) of ± 0.2 ppm/ $\rm{^o}$ C (-55 $\rm{^o}$ C to ± 125 $\rm{^o}$ C, +25°C ref.), one order of magnitude better than previous foil technologies. The lower the absolute TCR, the better a resistor can maintain its precise value despite of ambient temperature variations and self-heating when power is applied.

A specific foil alloy with known and controllable properties (Ni/Cr with additives) is cemented to a special ceramic substrate, resulting in a thermo-mechanical balance of forces. A resistive pattern is then photo-etched in the foil. This process uniquely combines the important characteristics of low TCR, long-term stability, non-inductance, ESD insensitivity, low capacitance, fast thermal stabilization, and low noise in one single resistor technology.

These capabilities bring high stability and reliability to system performance without any compromise between accuracy, stability, and speed. To acquire a precision resistance value, the Bulk Metal Foil chip is trimmed by selectively removing built-in "shorting bars." To increase the resistance in known increments, selected areas are cut, producing progressively smaller increases in resistance.

"Why are extremely low absolute TCR resistors required?" This is a good question to ask when evaluating the performance and cost of a system, and the answers are as numerous as the systems in which the resistors are installed. The following pages discuss ten different individual technical characteristics of Bulk Metal® Foil technology that are important to precision analog circuits. While each characteristic is discussed independently for clarity, many circuits require some specific combination of these characteristics and, often, all characteristics are required in the same resistive devices.

In the planar foil, the parallel patterned element design reduces inductance; maximum total inductance of the resistor is 0.08 μH. Capacitance is 0.5 pF maximum. A 1 kΩ resistor has a settling time of less than 1 ns up to 100 MHz. Rise time depends on resistance value, but higher and lower values are only slightly slower than mid-range values. Absence of ringing is especially important in high-speed switching as in, for example, signal conversion. The DC resistance of a 1 kΩ Bulk Metal Foil resistor compared with its AC resistance at 100 MHz can be expressed as follows: AC resistance/DC resistance = 1.001.

Foil techniques produce a combination of highly desirable and previously unattainable resistor specifications. By taking advantage of the overall stability and reliability of Bulk Metal Foil technology resistors, designers can significantly reduce circuit errors and greatly improve overall circuit performance. Bulk Metal technology enables customer-oriented products designed to satisfy challenging technical requirements. Customers are invited to contact our Application Engineering Department with nonstandard technical requirements and special applications (email: foil@vpgsensors.com).

Features

- Temperature coefficient of resistance (TCR) for Z Foil Technology: ±0.2 ppm/ºC typical (–55ºC to +125ºC, +25ºC ref.)
- Power coefficient of resistance for Z Foil technology (Power PCR) "ΔR due to self heating": ±5 ppm at rated power
- Load-life stability: to $\pm 0.005\%$ (50 ppm) at $+70^{\circ}$ C, 10,000 hours at rated power
- Resistance tolerance: to $\pm 0.001\%$ (10 ppm)
- Resistance range: 0.5 mΩ to 1.8 MΩ
- Electrostatic discharge (ESD): at least to 25 kV
- Non-inductive, non-capacitive design
- Rise time: 1 ns without ringing
- Thermal stabilization time <1 sec (nominal value achieved within 10 ppm of steady-state value)
- Current noise: 0.010 μVRMS/volt of applied voltage (<–40 dB)
- Thermal EMF: 0.05 μV/ºC
- Voltage coeffcient: <0.1 ppm/V
- Trimming operations increase resistance in precise steps but from remote locations so that the etched grid in the active area remains reliable and noise-free (see Figures 4 and 5)
- Lead (Pb) free, tin/lead and gold terminations are available

Range of Bulk Metal Foil Resistor Products

- Surface-mount chips, molded resistors and networks
- Power resistors and current sensors
- Military established reliability (QPL, DLA, EEE-INST-002, ESA, CECC)
- Leaded (through-hole)
- Hermetically sealed
- Trimming potentiometers
- Voltage dividers and networks
- Hybrid chips (wire-bondable chips)
- High-temperature resistors (>220°C)
- Resistors for audio

Reason 1: Temperature Coefficient of Resistance (TCR)

As an example, one might examine the requirements of an operational amplifier. In operational amplifiers the gain is set by the ratio of the feedback resistor to the input resistor. With differential amplifiers the common-mode rejection ratio (CMRR) is based on the ratios of a fourresistor set. In both cases, any change in the ratios of these resistors directly affects the function of the circuit. The ratios might change due to different absolute temperature coefficients experiencing differential heating (either internal or external), differential tracking through changes in ambient temperature, differential time-response to step inputs or highfrequency signals, differential Joule heating due to different power levels, different changes in resistance over design life, etc.

So it can easily be seen that it is common for many circuits to depend on many application-related stability characteristics —all at the same time in the same devices. Bulk Metal Foil technology is the ONLY resistor technology that provides the tightest envelope of ALL of these characteristics in the same resistor, with low noise also inherent.

Initial TCR

The solution to stability problems is resistors with extremely low absolute TCR to keep temperature-induced changes to a minimum. Two predictable and opposing physical phenomena within the composite structure of the resistive alloy and its substrate are the keys to the low absolute TCR capability of a Bulk Metal Foil resistor:

- **•** Resistivity of the resistive alloy changes directly with temperature in free air (resistance of the foil increases when temperature increases)
- **•** The coefficient of thermal expansion (CTE) of the alloy and the substrate to which the foil alloy is cemented are different, resulting in a compressive stress on the resistive alloy when temperature increases (resistance of the foil decreases due to compression caused by the temperature increases)

The two opposing effects occur simultaneously, resulting in an unusually low, predictable, repeatable, and controllable TCR. Due to the design of the Bulk Metal Foil resistor, this TCR characteristic is accomplished automatically, without selection, and regardless of the resistance value or the date of manufacture — even if years apart.

Improved TCR In Bulk Metal® Z Foil Resistors to ±0.2 ppm/°C

Foil resistor technology has continued to progress over the years, with significant improvements in TCR. Figure 1 shows the typical TCR characteristics of the various foil alloys used to produce Bulk Metal Foil resistors. The original C Foil alloy exhibited a negative parabolic

response to temperature with a positive chord slope on the cold side and a negative chord slope on the hot side. Next was the K Foil alloy, which produced an opposite parabolic response with temperature with a negative chord slope on the cold side and a positive chord slope on the hot side. In addition, it provided a TCR approximately one half that of the C Foil alloy.

The latest breakthroughs are the Z and Z1 Foil alloys, which have a similar parabolic response to the K Foil alloy but produce TCR characteristics an order of magnitude better than C Foil and five times better than the K Foil. Using this technology, extremely low TCR resistors have been developed that provide virtually zero response to temperature. These technological developments have resulted in a major improvement in TCR characteristics compared to what was available before, and what is available in any other resistor technology.

Typical TCR

Foil typical TCR is defined as the chord slopes of the relative change of resistance vs. temperature (RT) curve, and is expressed in ppm/°C (parts per million per degree centigrade). Slopes are defined from 0°C to +25°C and +25°C to +60°C (instrument range), and from –55°C to +25°C and +25°C to +125°C (military range). These specified temperatures and the defined typical TCR chord slopes apply to all resistance values, including low-value resistors. Note, however, that without four terminals and Kelvin connections in low values, an allowance for lead resistance and associated TCR may have to be made. All resistance and TCR measurements of leaded styles are made by the factory at a gage point one-half in from the standoffs. Contact the Application Engineering Department for the expected TCR increase for low-value resistors.

TCR Tracking

TCR tracking defines how closely the resistance of one resistor "follows" the resistance of one or more other resistors over a given temperature range. It shows how well two or more resistors maintain fixed resistance ratios when the ambient temperature changes. Tracking with temperatures is the most common use of the term, however, there may be occasions when tracking with load, environmental and time are required. For the best maintenance of resistance ratios in real-life applications, both absolute and tracking TCR are important. The tracking component of the resistor ratios assumes that all the related resistors are at the same temperature. Foil resistors offer the best available tracking with all of these stresses in addition to temperature. To assume good ratio stability and shy away from temperature-related errors, designers should utilize resistors with the lowest absolute TCR possible. To achieve efficient TCR tracking between resistors, all factors that affect the TCR of each resistor must be uniform. Whatever their resistance range or wattage. This is achievable with VPG Foil Resistors.

The best analog design would be to use a fundamentally low-absolute-TCR resistor, since it would minimize the effect of ambient temperature and self-heating. This is impossible to accomplish with resistors with high TCR >5 ppm/°C, even with good initial TCR tracking of less than 2 ppm/°C.

Reason 2: Power Coefficient of Resistance (PCR)

The TCR of a resistor for a given temperature range is established by measuring the resistance at two different ambient temperatures: at room temperature and in a cooling chamber or oven. The ratio of relative resistance change and temperature difference gives the slope of $\Delta R/R =$ f (T) curve. This slope is usually expressed in ppm/°C. In these conditions, a uniform temperature is achieved in the measured resistance. In practice, however, the temperature rise of the resistor is also partially due to self-heating as a result of the power it is dissipating. As stipulated by the Joule effect, when current flows through a resistance, there will be an associated generation of heat. Therefore, the TCR alone does not provide the actual resistance change for a precision resistor.

Hence, another metric is introduced to incorporate this inherent characteristic—the power coefficient of resistance (PCR). PCR is expressed in parts per million per Watt (ppm/W) or in ppm at rated

power. In the case of Z Foil Bulk Metal® resistors, the PCR is 5 ppm typical at rated power or 4 ppm/W typical for power resistors. For example, for a foil power resistor with a TCR of 0.2 ppm/ºC and PCR of 4 ppm/W, a temperature change of 50ºC (from +25ºC to +75ºC) at rated power of 0.5 W will produce a Δ R/R of 50 x 0.2 + 0.5 x 4 = 12 ppm absolute change.

Reason 3: Thermal Stabilization

When power is applied to the resistor, self-heating occurs. Foil's low TCR and PCR capabilities help to minimize this effect. But to achieve highprecision results, a rapid response to any changes in the environment or other stimuli is necessary. When the level of power is changed, the resistance value must adjust accordingly as quickly as possible. A rapid thermal stabilization is important in applications where the steady-state value of resistance according to all internal and external factors must be achieved quickly to within a few ppm.

While most resistor technologies may take minutes for thermal stabilization to its steady-state value, a Bulk Metal Foil resistor is capable of almost immediate stabilization, down to within a few ppm in under a second. The exact response is dependent on the ambient temperature as well as the change in power applied; the heat flow when power is applied places mechanical stresses on the element and as a result causes temperature gradients. Regardless, Bulk Metal Foil outperforms all other technologies by a large margin (see Figure 3).

Reason 4: Resistance Tolerance

Why do users employ tight-tolerance resistors? A system, device, or one particular circuit element must perform for a specified period of time and still perform within specification at the end of that service period. During its service life, it may have been

subjected to some hostile working conditions and therefore may no longer be within the purchased tolerance. One reason for specifying a tighter purchased tolerance than the end-of-life error budget tolerance is to allow room for service shifts. Another reason is that the error budget is more economically applied to resistors than to most other components.

Bulk Metal Foil resistors are calibrated as accurately as 0.001% by selectively trimming various adjusting points that have been designed into the photo-etched pattern of the resistive element (see Figure 4). They provide predictable step increases in resistance to the desired tolerance level. Trimming the pattern at one of these adjusting points will force the current to seek another longer path, thus raising the resistance value of the element by a specific percentage.

The comparative advantages of Bulk Metal® Foil resistors begin with how the devices are manufactured. Bulk Metal® Foil resistors are produced by cementing a cold rolled alloy film on a large-area substrate. The film is then photo-etched with ultimately fine lines and precise spacing to obtain resistances that are easily adjustable, down to 0.001% (10 ppm) with matching of pairs to 0.002% (20 ppm).The main point of this pattern calibration of Bulk Metal® Foil resistors refers to the fact that the trimming cuts create a non-active area where no current flows, and therefore, no hot spots are created. (see Figure 5).

In the fine adjusted areas, trimming affects the final resistance value by smaller and smaller amounts down to 0.001% and finally 0.0005% (5 ppm). This is the trimming resolution (see Figure 4).

Reason 5: Load Life Stability

Why are designers concerned about stability with applied load? Loadlife stability is the characteristic most relied upon to demonstrate a resistor's long-term reliability. Military testing requirements to 10,000 h with limits on amount of shift and the number of failures results in a failure rate demonstration. Precision Bulk Metal Foil resistors have the tightest allowable limits. Whether military or not, the load-life stability of Bulk Metal Foil technology resistors is unparalleled and long-term serviceability is assured.

The reason our resistors are so stable has to do with the materials of construction (Bulk Metal Foil and high alumina substrates). For example, the S102C and Z201 resistors are rated at 0.3 W at 125°C with an allowable ΔR of 150 ppm max after 2000 h under load and 500 ppm max after 10,000 h (see Figures 6 and 7 for the demonstrated behavior). Conversely, the ΔR is reduced by decreasing the applied power, which lowers the element temperature rise in Bulk Metal Foil technology resistors. Figure 6 shows the drift due to load-life testing at rated power and Figure 7 shows the drift due to load-life testing at varied power. Reducing the ambient temperature has a marked effect on load-life results and Figure 8 shows the drift due to rated power at different ambient temperatures. The combination of lower power and ambient temperature is shown in Figure 9 for model S102C.

Our engineers have ensured the stability of our resistors through several tests and experiments. Figure 10 displays the results of our tests that have been in progress for 29 years. Fifty sample S102C 10 kΩ resistors have been in a 70°C heating chamber while under 0.1 W applied power for this entire duration. The average deviation in resistance is just 60 ppm.

Figure 11 shows the shelf life performances, documented by a customer, for hermetically sealed VHP101 Foil resistors for over eight years. The average deviation did not exceed 1 ppm.

For evaluation of load-life stability, the two parameters that must be mentioned together—power rating and ambient temperature—can be joined into one single parameter for a given style of resistor. If the steady-state temperature rise can be established, it can be added to the ambient temperature and the sum will represent the combined (load induced + ambient) temperature. For instance, the S102C resistor has a temperature rise of 9°C per 0.1 W of applied power. This leads to the following example calculations:

If T = 75° C, P = 0.2W, and t = 2000 hrs.;

Then self-heating = 9° C x 2 = 18° C.

- 18°C rise + 75°C ambient = 93°C total ΔR.
- R max = 80 ppm from the curve of Figure 12.

Figure 12 shows, for the given duration of a load-life test, how the drift increases with the level of the applied combined temperature. As explained above, the combined temperature comprises the effect of power-induced temperature rise and the ambient temperature. The curve shows maximum drift.

11 Technical Reasons to Choose Bulk Metal® Foil Resistor Technology

11 Technical Reasons to Choose Bulk Metal® Foil Resistor Technology

Figure 12. Maximum resistance shifts after 2000 h of load-life test under thermal stresses*

Reason 6: High Speed and Response Time

The equivalent circuit of a resistor, as shown in Figure 13, combines a resistor in series with an inductance and in parallel with a capacitance (PLC). Resistors can perform like an R/C circuit, filter, or inductor depending on their geometry. In spiraled and wirewound resistors, this reactance is created by the loops and spaces formed by the spirals or turns of wire. Figure 14 shows how the capacitance and inductance increase as the resistance value increases due to continually increasing the number of spirals or turns.

Certain assembly techniques attempt to mitigate the inductance in wirewound resistors, but all have only limited effect. On the other hand, in planar resistors such as the Bulk Metal Foil resistors, the geometry of the lines of the resistor patterns is intentionally designed to counteract this reactance. Figure 15 shows a typical serpentine pattern of a planar resistor. Opposing current directions in adjacent lines reduce mutual inductance while geometry-related inter-line capacitances in series reduce overall capacitance. Both inductance and capacitance produce reactance proportional to the operating frequency, which changes the effective resistance and the phase between the current and voltage in the circuit.

Both inductive and capacitive reactance distort input signals, particularly in pulse applications. Figure 16 shows the current response to a voltage pulse comparing a fast Bulk Metal Foil resistor to a slower wirewound resistor. Here a pulse width of one nanosecond would have been completely missed by the wirewound resistor, while the Bulk Metal Foil technology resistor achieves full replication in the time allotted.

In frequency applications, these reactive distortions also cause changes in apparent resistance (impedance) with changes in frequency. Figure 17 shows a family of curves relating the AC resistance to the DC resistance in Bulk Metal Foil resistors. Very good response is seen in the 100 Ω range out to 100 MHz, and all values have a good response out to 1 MHz. The performance curves for other resistor technologies can be expected to show considerably more distortion (particularly wirewound devices).

Reason 7: Noise: "Hear the Difference"

As sound reproduction requirements become more demanding, the selection of circuit components becomes more exacting and the resistors in the signal path are critical. Measurement instrumentation based on low-level signal inputs and high gain amplification cannot tolerate microvolt-level background noise when the signal being measured is itself in the microvolt range. Although audio circuitry, where signal purity is of the utmost concern, is the most obvious use of noise-free components, other industries and technologies are equally concerned with this characteristic.

Resistors, depending on construction, can be a source of noise. This unintended signal addition is measurable and independent of the presence of a fundamental signal. Figures 18-20 illustrate the effects of resistor noise on a fundamental signal. Resistors made of conductive particles in a non-conductive binder are the most likely to generate noise.

In carbon composition and thick film resistors, conduction takes place at points of contact between the conductive particles within the binder matrix. Where these point-to-point contacts are made constitutes a highresistance conduction site, which is the source for noise. These sites are sensitive to any distortion resulting from expansion mismatch, moisture swelling, mechanical strain, and voltage input levels. The response to these outside influences is an unwanted signal as the current finds its way through the matrix. Figure 21 illustrates this current path.

Resistors made of metal alloys, such as Bulk Metal Foil resistors, are the least likely to be noise sources. Here, the conduction

Figure 18. Segment of a fundamental curve

Figure 20. Signal with a Bulk Metal Foil resistor

is across the inter-granular boundaries of the alloy. The inter-granular current path from one or more metal crystals to another involves multiple and long current paths through the boundaries, reducing the chance for noise generation. Figure 22 illustrates this current path.

In addition, the photolithography and fabrication techniques employed in the manufacture of Bulk Metal Foil resistors result in more uniform current paths than are found in some other resistor constructions. Spiraled resistors, for example, have more geometric variations that contribute to insertion of noise signals. Bulk Metal Foil resistors have the lowest noise of any resistor technology, with the noise level being essentially immeasurable. Signal purity can be a function of the selection of resistor technology for pre-amp and amplifier applications. Bulk Metal Foil technology resistors offer the best performance for low-noise audio applications.

Reason 8: Thermal EMF

When a junction is formed by two dissimilar metals and is heated, a voltage is generated due to the different levels of molecular activity within these metals. This electromotive force, induced by temperature, is called thermal EMF and is usually measured in microvolts. A useful purpose of this thermal EMF is for the measurement of temperature using a thermocouple and microvolt meter.

In resistors, thermal EMF is considered a parasitic effect interfering with pure resistance (especially at low values when DC voltage is applied). It is often caused by the dissimilarity of the materials used in the resistor construction, especially at the junction of the resistor element and the lead materials. The thermal EMF performance of a resistor can be degraded by external temperature differences between the two junctions, dissymmetry of power distribution within the element, and the dissimilarity of the molecular activity of the metals involved.

One of the key features of the Bulk Meteal Foil technology resistor is its low thermal EMF design. The flattened paddle leads (in through-hole designs) make intimate contact with the chip, thereby maximizing heat transfer and minimizing temperature variations. The resistor element is designed to uniformly dissipate power without creating hot spots and the lead material is compatible with the element material. These design factors result in a very low thermal EMF resistor. Figures 23 and 24 display the various design characteristics that give these resistors an extremely low thermal EMF.

Reason 9:

Electrostatic Discharge (ESD)

Damage to ESD-sensitive devise depends on the devise's ability to dissipate energy and withstand the energy of voltage level involved.

In resistors, ESD sensitivity is a function of physical construction, size, value and thickness of the resistive layer.

The sensitivity level of resistors to ESD varies from a few hundred volts to a few tens of kilovolts.

The smaller is a resistor, the less area there is to spread the energy caused by ESD pulse.

When this energy is concentrated in small extent of a resistor's active element (in particular where there is a high current density and/or high concentration of hot spots) it causes the element to unpredictable heat up, which can lead to irreversible damage.

With the growing trend to miniaturization of resistors along simultaneous magnification of power rating the risk of ESD damage significantly grows up

Damage from RSD is a major cost of the microcircuit industry in terms of time, money and reliability/ mission risks

As per many-time proven and shown in different investigations and publications, Bulk metal foil resistors are comparatively immune to ESD, while thin film and thick film resistors are sensitive to ESD. ESD causes the thin film to rupture in thin film resistors and causes changes in the tolerance value. In thick film resistors, subjection to ESD reduces the resistance value. At times, ESD is employed as a trimming method in thick film resistors to prevent overshooting in the resistance value.

Tests show that Bulk Metal Foil chip resistors can withstand ESD events above 25 000 V, while Thin Film chip resistors have been seen to undergo catastrophic failures at electric potentials as low as 3000 V and parametric failures at even lower voltages.

The superiority of Bulk Metal Foil precision resistors over Thin Film, when subjected to ESD, is attributed mainly to their greater thickness (Foil is 100 times thicker than Thin Film), and therefore the heat capacity of the resistive foil layer is much higher compared to the Thin Film layer. Moreover, Thin Film is created through particle deposition processes (evaporation or sputtering), while foil is a bulk alloy with a crystalline structure created through hot and cold rolling of the melt.

It is strongly recommended to keep in mind that in case where high voltage ESD is an important requirement to request from chip manufacturer ESD comparability data of their product

If the application is likely to confront the resistor with ESD pulses of significant magnitude, the best resistor choice is VPG Foil Resistors' Bulk Metal Foil resistors.

11 Technical Reasons to Choose And And And And A $\mathsf{a}\mathsf{P}$ Eoil Recistor Technology and the ceramic results in a high reliability resistor with P **Rulk Metal® Foil Resistor Technology**

Flattened "paddles" are wrapped around the resistance element structure and welded directly to the resistance alloy—thus there is only one weld per lead. The closely related thermal characteristics of the selected materials, combined with the unique "paddle" lead design, produce a resistor with extremely low Thermal EMF.

Figure 23. Ruggedized construction

Reason 10: Non-Measurable Voltage Coefficient

As mentioned earlier in our section on resistor noise, resistors can change value due to applied voltage. The term used to describe the rate of change of resistance with changing voltage is known as voltage coefficient. Resistors of different constructions have noticeably different voltage coefficients. In the extreme case, the effect in a carbon composition resistor is so noticeable that the resistance value varies greatly as a function of the applied voltage. Bulk Metal Foil resistor elements are insensitive to voltage variation and the designer can count on our resistors having the same resistance under varying circuit voltage level conditions. The inherent bulk property of the metal alloy provides a nonmeasurable voltage coefficient.

11 Technical Reasons to Choose Bulk Metal® Foil Resistor Technology

Reason 11: Humidity & Moisture

Resistors that are part of electronic assemblies can be exposed to a wide variety of environmental conditions including variations in humidity and/or moisture.

The intrinsic advantages of Bulk Metal® Foil resistors are due to materials and unique processes applied during manufacturing.

Bulk Metal® Foil resistors are produced by cementing a cold-rolled **bulk alloy** foil (NiCr based) on a large-area substrate. The NiCr foil is then photoetched to provide a predesigned pattern of fine lines and precise spacing to obtain the target resistance values.

Bulk Metal® Foil technology (unlike thin & thick film) is based on the original melted solids from the bulk structure that create a well predicted and environmentally stable property construction.

Consequently, resistors based on Bulk Metal® Foil technology can withstand better the environmental humidity conditions compared to other technologies.

The failure mechanism related to humidity impact can be divided into short or long term effect:

The short term effect causes a resistive element shunting that can result in change of thousands of ppm of resistance value and is reversible in its nature (when drying or power is applied).

The long term effect causes degradation in film structure by undesired etching. Within application usage, resistors experience temperature variations, humidity variations and pressure variations. When the resistor is running at low DC power in the presence of moisture, the conditions enable resistive element damage and etching leading to catastrophic failure.

VPG Foil Resistors has been manufacturing resistors for 60 years based on Bulk Metal® Foil technology. VPG Foil Resistors has gone one step further by implementing a new development of "Z1 Technology" which is a superior combination of high temperature and high thermal conductivity polyimide family materials for both adhesive and overcoat.

In reference to moisture resistance properties, herewith are two facts of "Z1 Technology":

- 1. "Home-made" poly-imide/amide adhesive is developed for VPG Foil Resistors and constructed with a uniquely designed hetero-structure that improves heat dissipation and moisture protection mechanisms.
- 2. Polyimide photosensitive overcoat material which characteristics are pinhole free and has uniform thickness enhances thermal stability, chemical resistance and moisture protection properties.

There are many acceptable industrial tests for evaluating resistance to temperature, moisture, and humidity. Some are under specified terms and conditions, and others are accepted, accelerated quick test performances.

In all cases, the traditional criteria for determining the moisture influence is to measure resistance shift (∆R) at known intervals of time.

The shift in resistance can predict and indicate how the resistor will act during usage.

Among the known test methods are:

- **• 85 / 85 Humidity Test**, which is a test for 1,000 hours at 85ºC and 85% RH under 10% Pn.
- **• Moisture Test per MIL-STD-202 method 106** for 10 days at 65ºC and 93% RH under 10% Pn or 100% Pn (or without load).
- **• Pressure Cooker Test** Performed under 2 atm pressure for 100 hours at 121ºC and 99% RH with or without 1 V bias.

In the table below, one can see the comparison of Moisture/Humidity testing results for 2 typical constructions of VPG Foil resistors (produced with the standard and the new developed "Z1 Technology":

In conclusion, Bulk Metal® Foil Technology with the added improvement of Z1 Technology provides superior performances in humidity & moisture and an additional benefit for using VPG Foil Resistors.

How Much Performance?

Naturally, not every engineer needs an entire high-performance package for their circuitry. Resistors with much poorer specifications can be used satisfactorily in many applications, so the question of need is divided into four basic categories:

- 1. Existing applications that can be upgraded by relying on the total performance package of Bulk Metal Foil resistors.
- 2. Existing applications that require one or more, but not necessarily all, of the performance parameters to be "industry best."
- 3. State-of-the-art circuitry that can only be developed now because of the availability of improved specifications for precision resistors.
- 4. Purposeful pre-planned use of precision resistors to allow for future upgrading (e.g., cost savings can be realized by having the circuit accuracy maintained by the resistors rather than by the active devices, which would greatly increase costs for only slightly better levels of performance).

In category two, for example, the need for a single parameter must be weighed against the economics of the whole package. It could cost less to use a resistor with superior overall performance specifications, because the need for compensating circuitry (and the cost of the associated components plus their assembly) may be eliminated. Cost savings may also be achieved by concentrating precision in the resistors rather than in the active devices, because active devices have greater cost per marginal performance improvement than the resistors do.

Another question that might be posed is, "Would utilizing a higherperformance resistor in order to upgrade equipment performance enhance market acceptance of the equipment?"

Conclusion

All-In-One Resistor

The ten reasons to specify foil resistors are inherent in the design and are not a function of manufacturing variables or a selection process. This combination of parameters is not available in any other resistor technology. Bulk Metal Foil technology resistors combine performance characteristics resulting in unmatched performance and high reliability, satisfying the needs of today's expanding requirements.

Special Order

Consider Bulk Metal Foil technology resistors for all of your low TCR needs. Special orders may be placed for low-TCR, low-value resistors and tight TCR tracking of individual resistors and network combinations. Contact the Application Engineering Department to discuss your requirements for these and any other TCR applications (email: foil@vpgsensors.com).

Post-Manufacturing Operations (PMO) Enhance the Already Superior Stability of Bulk Metal Foil Technology Resistors

These post-manufacturing operations (PMOs) are uniquely applicable to resistors made of resistive foil and they take the already superior stability of Bulk Metal® Foil technology resistors one step further. They constitute an exercising of the resin that bonds the foil to the substrate, the foil, the alumina, the molding, and the contacts. The operations employed are:

- **•** Temperature cycling/thermal shock
- **•** Short-time overload/power shot (accelerated load life)
- **•** Power conditioning

Temperature Cycling

Temperature cycling is initially done in the chip stage of all production and will eliminate any fallout. The cycling exercises the foil and the contacts without reducing their initial bonding strength. A small reduction in resistance is tolerable during this PMO.

Short-Time Overload (Accelerated Load Life)

Short-time overload (STO) occurs when a circuit is subjected at one point in time to a temporary, unexpected high pulse (or overload) that can result in device failure. This STO is performed on all resistors during manufacturing, with a function of eliminating any hot spots if they exist.

Power Conditioning

The standard load-life curve of a foil resistor exhibits a significant portion of its change in the first 250 h to 500 h, after which the curve begins to stabilize (see Figure 1). The power conditioning exercise applies a load for a specified amount of time to eliminate this knee in

the load-life curve. Upon delivery, the resistor will be on the flat part of the curve for your convenience. The power conditioning is a function of the application and should be worked out between our Applications Engineering department and your design team.

Can We Use PMO on Other Resistor Technologies?

Applying these same operations to thick film, thin film, and wirewound resistors has vastly different consequences and can drive these devices out of tolerance or create an open circuit. The resistors experience too many failures to discuss here. On the other hand, these operations are an enhancement to foil resistor performance and should be considered when the level of stability required is beyond the published limits for standard products.

For further information and additional custom-designed PMO, please contact our Application Engineering department at foil@vpgsensors.com.

Contact us at foil@vpgsensors.com I vpgfoilresistors.com

The document and the products described herein are subject to change without notice and subject to specific disclaimers. Please visit https://vpgsensors.com/disclaimer for more information.